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Abstract. We locate the critical probability of bond percolation on two-dimensional random
lattices aspc = 0.3329(6). Because of the symmetry with respect to permutation of the two axes
for random lattices, we expect that for an aspect ratio of unity and sufficiently large lattices, the
probability of horizontal spanning equals the probability of vertical spanning. This is confirmed
by our Monte Carlo simulations. We show that the ideas of universal scaling functions and non-
universal metric factors can be extended to random lattices by studying the existence probability
Ep and the percolation probabilityP on finite square, planar triangular, and random lattices with
periodic boundary conditions using a histogram Monte Carlo method. Our results also indicate
that the metric factors may be the same between random lattices and planar triangular lattices
provided that the aspect ratios are 1 and

√
3/2.

Random lattices were first employed by Christ, Friedberg and Lee (CFL) to formulate
another type of lattice field theory [1–3]. In these lattices, the volume is partitioned
into non-overlapping simplices whose vertices are random-distributed lattice sites, and
then the coordination number of each lattice site is randomly distributed with the average
number approaching six for two dimensions in the infinite case. Also, by construction,
we can have random lattices with either periodic boundary conditions or formed on a
hyperspherical surface. An example of the two-dimensional random lattices used in this
work and constructed by the CFL algorithm [1] is given in figure 1. In [4], Hsuet al have
performed Monte Carlo simulations for bond percolation processes on two-dimensional
random lattices and their duals, and from the results of scaling powers they concluded
that the idea of universality can be extended to random lattices. However, besides the
critical exponents, it is also important to understand the scaling behaviour exhibited by
finite systems on random lattices. A similar issue was investigated by Espriuet al [5] for
the two-dimensional Ising model on random lattices to discover whether the specific heat
singularity is more logarithmic or log–log. No conclusive result was obtained, but their
study showed evidence that the random lattice specific heat agrees with the Onsager result
and disagrees with dilute Ising model results. In this paper we extend the work of [4] to
investigate the behaviour of scaling functions for the bond percolation processes on random
lattices.

The finite-size scaling was first formulated in 1971 by Fisher [6, 7]. Since then it has
been widely used for practical purposes. It is an efficient way to extrapolate the data
obtained from Monte Carlo simulations on finite systems to the thermodynamic limit. It
also serves as the basis of the real space renormalization group method [8]. Let us consider
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Figure 1. An example of a random lattice on a two-dimensional square area with periodic
boundary condition.

some physical quantityX, which is a function of the reduced probabilityt ≡ p − pc, in
percolation processes. According to the finite-size scaling hypothesis, if the quantityX is
known to scale asX(t) ∼ t−ρ near the critical pointt = 0 in the infinite system, then we
can expect that for a finite system characterized by a sizeL this quantityXL(t) should obey
the general scaling law,

XL(t) ∼ Lρ/νF (tL1/ν) (1)

whereν is the correlation length exponent, andF(x) with x = tL1/ν is called a scaling
function. When finite-size scaling is valid, the scaled dataXL(t)L

−ρ/ν for different values
of L and t are described by a single scaling functionF(x). Privman and Fisher [9] further
introduced the concept of universal scaling functions and non-universal metric factors. They
argued that the only non-universal factors are the metrical ones relating the relevant variables
to the physical parameters, and no other non-universal parameters enter into finite-size
scaling formulae. The non-universal metric factors may depend on the shapes and the
boundary conditions of the lattices as discussed by Ziff [10] and Ziffet al [11]. Specifically,
Privman and Fisher proposed that near the critical pointt = 0, the singular part of a free
energy can be written as

f s
L(t) ∼ L−dY (DtL1/ν) (2)

whered is the spatial dimensionality of the lattice,Y is a universal scaling function, andD
is a non-universal metric factor. Studies have been performed in a variety of models in this
aspect. Henkel computed the finite-size corrections for all energy gaps in the spectrum of the
quantum Ising chain in the finite-size scaling limit for periodic and antiperiodic boundary
conditions [12], and the scaling functions in the two-dimensional tricritical model [13].
Burkhardt and Guim [14] studied the scaling functions for spin–spin and energy–energy
correlations in Ising strips with various boundary conditions. Reinicke [15] and Reinicke
and Vescan [16] calculated analytical and non-analytical corrections to finite-size scalings
in the Ising and three-state Potts models. These models were also studied by Debierre and
Turban [17]. Lee evaluated the scaling function and the non-universal metric factors for
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the three-state Potts model on the square lattices [18]. Hu, Lin and Chen (HLC) showed
that by choosing a very small number of non-universal metric factors all scaled data of
the existence probabilityEp and the percolation probabilityP of percolation processes
on two-dimensional regular lattices may fall on the same universal scaling functions, and
free and periodic boundary conditions share the same non-universal metric factors [19, 20].
Hovi and Aharony [21] pointed out that the HLC results confirm the prediction from the
renormalization group approach [21]. Okabe and Kikuchi extended the work of HLC to
the two-dimensional Ising model on regular lattices and quasiperiodic lattices [22]. One
purpose of this work is to investigate what kind of features of universal scaling functions
and non-universal factors appear on random lattices. First, we employ the scaling form of
equation (1) to give a better estimate of the critical probabilitypc. Then we investigate the
universal scaling functions and the non-universal metric factors for the existence probability
of percolationEp and the percolation probabilityP on finite square, planar triangular, and
random lattices with periodic boundary conditions.

In the work of [4], the renormalization group method is used on rather small random
lattices to estimate the critical probabilitypc, and the resultant value ispc = 0.3387. To give
a better estimate ofpc, we use the scaling form of the existence probability of percolation,
Ep(G(L), p), which is defined as the average numbers of percolating clusters on random
latticeG of sizeL for a given link occupied probabilityp. Note that one can use different
spanning rules to define a percolation cluster [23, 24]. In this work, we useEv

p for the
average number of percolating clusters of vertical crossings,Eh

p for those of horizontal
crossings,Ev+h

p for the sum ofEv
p andEh

p, Ev∩h
p for those of simultaneous vertical and

horizontal crossings, andEp for the difference betweenEv+h
p andEv∩h

p . Because the critical
exponent ofEp is zero, the finite-size scaling suggests thatEv+h

p in the vicinity of pc may
take the form

Ev+h
p (G(L), p) = 1+ A(p − pc)L

1/ν + B (3)

whereB is of the order of [(p − pc)L
1/ν ]2 andν = 4

3. As pointed out by Langlandset al
[25], this form indicates that one may have two ways to estimatepc. One is to simulate the
quantityEv+h

p as a function ofp, and then to calculate its intercept withEv+h
p = 1. The

other is to simulate the quantityEv+h
p as a function ofp for two different values ofL, and

then to find the intercept of these two lines. We use these two methods to estimatepc. First,
we use the CFL algorithm to generate 10 random lattices on two square areas of side length
L = 160 andL = 200. Then we use the link random percolation process to generate 105

configurations for each of the five different values ofp, p = 0.332, 0.333, 0.334, 0.335, and
0.336, and calculateEv+h

p (G(L), p) by averaging first over the 105 configurations on each
lattice and then over the results of the 10 sample lattices. The resultant values are shown
in figure 2. The first method yieldspc = 0.332 98 for bothL = 160 andL = 200, and the
second method givespc = 0.332 94. Note that the value ofpc may vary from one random
lattice to another. For a lattice of size 160× 160 or 200× 200 and with the results ofEv+h

p
averaging over 10 sample lattices, we would expect the value ofpc to differ at the fifth digit
from that obtained by taking the average over sufficiently large numbers of sample lattices.
The error in the value ofpc caused by the calculation ofEv+h

p can be roughly estimated
as the difference between the values ofpc determined by the two methods. Therefore, the
best estimate of the critical probability from our results ispc = 0.3329(6).

To study the scaling functions, we use Hu’s histogram Monte Carlo method to simulate
bond percolation processes [26]. This method has been shown to be accurate and efficient,
and it yields results as a continuous function ofp. The latter is an important advantage for
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Figure 2. Numerical determination ofpc for bond percolation on random lattices. The results
are obtained by averaging over the 10 sample random lattices for two different lattices sizes
160× 160 (◦) and 200× 200 (×).

the study of scaling functions. Here we briefly review the histogram Monte Carlo method
and define related quantities. For a random latticeG with N sites andE links, first we
choosew values of link occupied probabilities, 0< p1 < p2 < · · · < pw < 1. For a
givenpj , 16 j 6 w, we use the link random percolation process to generateNR different
subgraphs. For each subgraphG′, we calculate the total number of occupied linksb(G′),
the total number of clustersn(G′), and the total number of sites in percolating clusters
N∗(G′). Then we use the above three quantities obtained fromwNR subgraphs to construct
matrices: the total number of percolating subgraphsNp(b, n), the total number of finite
subgraphsNf(b, n), andNpp(b, n) which is the sum ofN∗(G′), in terms of the number
of occupied linksb and the number of the clustersn. For a sufficiently large number of
simulations, we can expect that the total number of percolating subgraphs withb occupied
links andn clusters,Ntp(b, n), among the total 2E subgraphs to be proportional toNp(b, n),

Ntp(b, n) = C(b)Np(b, n). (4)

Similarly for Ntf(b, n), the total number of finite subgraphs withb occupied links andn
clusters, we have

Ntf(b, n) = C(b)Nf(b, n). (5)

Here the proportionality constant is

C(b) = CEb∑N
n=1(Np(b, n)+Nf(b, n))

. (6)
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In terms ofNtp(b, n) andNtf(b, n), we can write the partition function as

ZN(G, p) =
E∑
b=0

N∑
n=1

(Ntp(b, n)+Ntf(b, n))p
b(1− p)E−b. (7)

Then the percolating probability,P(G, p), which is defined as the average value of the site
number density contained in percolating subgraphs, can be written as

P(G, p) = 1

NZN(G, p)

E∑
b=0

N∑
n=1

Ntpp(b, n)p
b(1− p)E−b (8)

with Ntpp(b, n) = C(b)Npp(b, n), and the existence probability,Ep(G, p), which is defined
as the average number of percolating subgraphs, is in the form of

Ep(G, p) = 1

ZN(G, p)

E∑
b=0

N∑
n=1

Ntp(b, n)p
b(1− p)E−b. (9)

The simulated data ofEp andP are used to study the corresponded scaling functions.
In the past few years the behaviour ofEv

p(G, p) at the critical probabilityp = pc for
rectangular lattices of widtha and heightb with different aspect ratiosr = a/b and different
boundary conditions has attracted researchers’ interest. There is an unique valuer0 of r
such that for the infinite system at the critical probabilityp = pc

Eh
p(r0, pc) = Ev

p(r0, pc). (10)

This implies that in the infinite system we have

Eh
p(r0, pc) = Ev

p(r0, pc) = 0.5. (11)

Because of the symmetry with respect to permutation of the two axes for a square lattice,
one can expect thatr0 = 1. One can also use this argument to conclude thatr0 = 1 for
random lattices, and this is confirmed by our Monte Carlo simulations. For other cases, it
has been proposed that the value ofr0 is

√
3/2 for planar triangular lattices, and

√
3 for

honeycomb lattices [25]. Ziff [10] pointed out that there is a finite-size correction to the
value ofr, but such a correction is not considered in this work.

Keepingr = 1, we first perform histogram Monte Carlo simulations on random lattices
with L = 8, 14, and 30. In the simulations, the number of link occupied probabilities,w,
is chosen to be about 185, and the number of subgraphs for a probability,NR, is about
1.2× 106 . Then equations (8) and (9) are used to obtainP andEp, and the results are
shown in figure 3. To investigate whether the obtained data exhibit the scaling behaviour
of equation (1), we plotEp andP/L−βyt of three different sizes of random lattices as a
function of x = (p − pc)Lyt by using the exact values ofyt = 3/4 andβ = 5/36 and
the estimated value of the critical probability,pc = 0.332 96. The results are shown in
figure 4, and one can see that all the scaled data ofEp or P can be described by a single
scaling function. Then we study the idea of universal scaling functions and non-universal
metric factors by comparing the results of random lattices with those of square and planar
triangular lattices with periodic boundary conditions. We choose the size of 30× 30 for a
square lattice, and 26×30 to approximate the aspect ratior = √3/2 for a planar triangular
lattice. For random lattices, we choose the size of 30× 30, and average the results over
10 sample lattices. In the simulations, the parameters are chosen to be aboutw = 250 and
NR = 1.2× 106 for all the lattices. With the critical probability 0.5 for square lattices,
0.347 29 for planar triangular lattices [27], and 0.332 96 for random lattices, the simulated
results and the corresponded scaled results ofP andEp are shown in figures 3 and 4. One
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Figure 3. The results of (a) the percolating probabilitiesP(G, p) and (b) the existence
probabilitiesEp(G, p) on random lattices (full curves), planar triangular lattices (dotted curve),
and square lattices (dashed curve). The full curves below the intersections from left to right
correspond toL = 8, L = 14, andL = 30.
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Figure 4. The scaled results of (a)Ep and (b) P/L−βyt on random lattices (full curves),
planar triangular lattices (dotted curve), and square lattices (dashed curve) as a function of
x = (p − pc)L

yt .
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Table 1. The values of metric factorsD1, D2, andD3 for square, planar triangular, and random
lattices with periodic boundary conditions.

Lattices D1 D2 D3

Square 1 1 1
Planar triangular 1.164(5) 1.174(9) 1.012(4)

1.2(39)a 1.2(47)a 1.01(6)a

Random 1.160(0) 1.196(4) 1.065(6)

a From [19].

Figure 5. The scaling functionF(x) (full curve) with the data obtained from random lattices
(×), planar triangular lattices (4), and square lattices (�), wherex = D1(p − pc)L

1/ν .

can see from figure 4 that the scaled result ofP or Ep for the planar triangular lattice are
very close to those for random lattices.

Following HLC [19], we introduce three non-universal metric factors as follows. The
first metric factorD1 is introduced inEv

p by the relation

Ev
p(G(L), p) = F(x) (12)

with x = D1(p − pc)L
1/ν . The other two metric factors,D2 andD3, are introduced inP

by the relation

D3P(G(L), p) = L−βyt S(z) (13)

with z = D2(p − pc)L
1/ν . Note thatEv

p in the vicinity of pc for an infinite lattice with
aspect ratior0 takes the form

Ev
p(G(L), p) = 0.5+ Av(p − pc)L

1/ν + Bv (14)
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Figure 6. The scaling functionS(z) (full curve) with the data obtained from random lattices
(×), planar triangular lattices (4), and square lattices (�), wherez = D2(p − pc)L

1/ν .

whereBv is the order of [(p−pc)L
1/ν ]2. We use the value ofAv to approximate the value

of D1 for each lattice. The results ofD1 for square, planar triangular, and random lattices
are given in table 1. Then we fit the data ofEv

p as a polynomial ofx up to the ninth power
for each lattice, and take the average of the fittings of the three different types lattices as
our final result. It yields the scaling function as

F(x) = 0.5149+ 0.9638x − 0.0584x2− 0.959(1)x3+ 0.096(7)x4+ · · · .
This scaling function and the data are shown in figure 5. Note that if the coefficient of the
linear term in the scaling function is normalized to 1, we have

F(x̂) = 0.5149+ x̂ + k2x̂
2+ k3x̂

3+ k4x̂
4+ · · ·

with k2,3,4 = −0.062(9), −1.071(3), and 0.112(1). Comparing with the resultsk2,3,4 =
−0.517± 0.010,−1.08± 0.1, and 0.94± 0.15, obtained by Hovi and Aharony [21] two
results agree ink3 but disagree ink2 and k4. This may be due to the fact that we have
used the periodic boundary condition on both directions and adopted the spanning rule of
vertical crossing for a percolating cluster.

Similar procedures are applied to the percolating probabilityP . We use the factorD3

to adjust the values ofS(z) such thatS(0) have the same value for the three different
lattices, and the coefficients of the linear term in the power series of(p− pc)L

1/ν are used
to approximate the values ofD2. The values ofD2 andD3 for different lattices are given
in table 1, and the resultant scaling function is

S(z) = 0.726(4)+ 1.341(5)z− 0.313(9)z2− 1.50(7)z3+ 0.62(7)z4+ · · ·
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which is shown in figure 6 with the data. In table 1, we also give the values ofD1, D2,
andD3 on a 433× 500 planar triangular lattice obtained by HLC [19]. In comparison with
their lattice, we have used a rather small lattice, 26× 30, but the results are very close to
each other.

In conclusion, we have located the critical probability of bond percolation on two-
dimensional random lattices, and shown that the ideas of universal scaling functions and
non-universal metric factors can be extended to random lattices. Our results show that, with
the same scaling functions, the metric factors of random lattices agree with those of planar
triangular lattices up to the first or the second digit. We speculate that after taking the
average of the results over sufficiently large numbers of random lattices, the metric factors
may be the same between random lattices and planar triangular lattices provided that the
aspect ratios are 1 and

√
3/2.
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[8] Brézin E 1982J. Physique43 15
[9] Privman V and Fisher M E 1984Phys. Rev.B 30 322

[10] Zif f R M 1996 Phys. Rev.E 54 2547
[11] Ziff R M, Finch S R and Adamchik V S 1997Phys. Rev. Lett.79 3447
[12] Henkel M 1987J. Phys. A: Math. Gen.20 995
[13] Henkel M 1990J. Phys. A: Math. Gen.23 4369
[14] Burkhardt T W and Guim I 1987Phys. Rev.B 35 1799
[15] Reinicke P 1987J. PhysiqueA 20 5325
[16] Reinicke P and Vescan T 1987J. Phys. A: Math. Gen.20 L653
[17] Debierre J M and Turban L 1987J. Phys. A: Math. Gen.20 1819
[18] Lee K C 1992Phys. Rev. Lett.69 9
[19] Hu C K, Lin C Y and Chen J A 1995Phys. Rev. Lett.75 193
[20] Hu C K and Lin C Y 1996Phys. Rev. Lett.77 8
[21] Hovi J P and Aharony A 1996Phys. Rev. Lett.76 3874
[22] Okabe Y and Kikuchi M 1996Int. J. Mod. Phys.C 7 287
[23] Reynolds P J, Stanley H E and Klein W 1978J. Phys. A: Math. Gen.11 L199
[24] Reynolds P J, Stanley H E and Klein W 1980Phys. Rev.B 21 1223
[25] Langlands R P, Pichet C, Pouliot Ph and Saint-Aubin Y 1992J. Stat. Phys.67 553
[26] Hu C K 1992Phys. Rev.B 46 6592
[27] Stauffer D and Aharony A 1992Introduction to Percolation Theory2nd edn (London: Taylor and Francis)


